Meet our partners: Ochsner

This interview is part of a series! You can see all our partner interviews here.

Ochsner Wärmepumpen (OCHSNER) was founded in 1978 as one of the first companies in Europe to produce heat pumps on an industrial scale, being a well-known producer of innovative heat pump systems covering all types of heat sources and capacities ranging from 2 to 1.600 kW.

In GEOFIT, they are responsible for several innovations with regards to optimising the design of heat pumps. These innovations have never been applied in heat pumps design and sizing and they will allow to decrease the environmental footprint while in parallel making heat pumps more affordable so that they can compete against non-renewable technologies.

One of the innovations, in collaboration with AIT, regards the design of an innovative, electrically-driven heat pump system with low/medium GWP synthetic refrigerant, which in turn makes a more cost-effective use of heat exchangers (HEX). They have also contributed to new methods to calculate heat pump sizing requirements which have been implemented within the IDDS framework used to design our pilot sites. This new methods will prevent oversizing of the heat pump component in geothermal systems which often results in non-optimal efficiencies/return on investment and can decrease the competitiveness of geothermal technologies with respect to competing systems.

These innovations have never been applied in heat pumps design and sizing and they will allow to decrease the environmental footprint while in parallel making heat pumps more affordable so that they can compete against non-renewable technologies.

In this interview, Oschner founder Dipl. Ing. ETH Karl Ochsner talks about the benefits of using the heat pumps in geothermal retrofitting, how projects like GEOFIT can connect themselves to the European Heat Pump Association (EHPA), and its impact on the market and the environment.

Model development and performance analysis of Novel Shallow Ground Heat Exchangers

by Henk Witte – Groenholland

One of the key aspects of the EU GEOFIT project is the development of integrated engineering design tools for different types of ground heat exchangers. This toolkit provides design methodologies for vertical borehole heat exchangers, shallow horizontal and slinky type heat exchangers, and earth basket (spiral) heat exchangers.

Ground heat exchangers (GHEX) are used to provide a heat source or heat sink used for heating or cooling a building. They are typically constructed of plastic pipes installed in different configurations in the ground. A fluid is circulated in the pipes and the GHEX extracts heat from the ground (heating operation) or rejects heat to the ground (cooling operation).

For the validation of the analytical solutions used in the integrated engineering design toolkit, especially the new finite line source solutions developed for earth basket (spiral) heat exchangers laboratory experiments (figure 1) and detailed numerical simulations (figure 2) have been performed.

Figure 1. Experimental sandbox setup for earth basket (spiral) heat exchanger characterisation (foto: AIT)

The performance of a ground heat exchanger can be summarized to two key parameters:

  1. Pressure drop: A measure of the pump energy needed to move the fluid through the heat exchanger.
  2. Thermal resistance between fluid and ground: A measure of the thermal performance of the GHEX.
Figure 2. CFD simulation of earth basket (spiral) heat exchanger (foto: AIT).

The goal of the performance analysis is to identify key-design parameters affecting the overall system performance. Parameters investigated include:

  • Diameter of the earth basket (spiral) heat exchanger
  • Pipe diameter in relation to flow rate and pressure drop
  • Distance between adjacent rings in relation to total length and buried depth
  • Soil thermal parameters

Evaluation of the results of the performance analysis should take into account the actual effect on system performance. As an example, it can be attempted to reduce the thermal resistance in all cases as much as possible. However, the effect on performance is related to the actual heat rate of the system (figure 3). It is clear that with a low heat rate (5 W/m) the thermal resistance can be allowed to be high without affecting performance. These results will have implications for operating these systems during part-load conditions, which is important in view of the application of frequency-controlled compressors in the heat pumps. In this way, the results of the GEOFIT project not only provide designers with the tools to evaluate different types of ground heat exchangers in one integrated tool but also allows optimization of actual system operational control.

Figure 3. Relation between thermal resistance (fluid to ground) and energy performance degradation for different specific heat rates.

REFERENCES

Meeng, C.L (2020). Development of an engineering tool for the design of novel shallow ground heat exchangers – GEOFIT. MSc Thesis TU Eindhoven.

Dörr, C.J. (2020). CFD Analysis of Ground Heat Exchangers. MSc Thesis Montan Universität Leoben, Austrian Institute of Technology.

Kling, S. (2020). Experimental characterization of Helix-Type Ground Source Heat Exchangers Configurations for Developing a Standardized Design Tool. MSc Thesis FH Burgenland University of Applied Sciences, Austrian Institute of Technology.

GEOFIT at Sustainable Places 2020

On Day 3 of the 4-day virtual Sustainable Places 2020 (SP2020) conference, Thursday 29th October from 14.00 – 17.00 CET, Marco Calderoni from GEOFIT contributed to the “Renewable Heating and Cooling Solutions for Buildings and Industry Workshop”, and the presentations and video recordings are publicly accessible.

Banner for “Renewable Heating and cooling solutions for Buidlings and Industry” at SP2020

The workshop brought together a selection of H2020 EU-funded projects involving experts from the biomass, geothermal, solar thermal and heat pump sectors to discuss a common strategy for increasing the use of renewable energy technologies for heating and cooling for buildings and industry. Renewable energy technologies for heating and cooling are safe, clean, efficient and increasingly cost-competitive. The workshop comprised four thematic sessions, namely “RHC for industrial applications”, “Storage solutions for RHC support in buildings”, “Innovative solutions for RHC deployment in buildings”, and finally the one that GEOFIT presented in called “Demonstration actions for RHC in buildings”.

Marco Calderoni from R2M Solution presented the GEOFIT project and highlighted first lessons learnt based on experience at the five demonstration sites.

R2M Solution organizes the annual international Sustainable Places conference, and the recent 8th as usual focused on the built environment at building, district, and urban scales to include our transport and energy infrastructures. Renowned for showcasing results coming out of the EU Horizon 2020 Framework Programme via the participation of cutting-edge research and innovation projects, the scope of Sustainable Places is captured directly in its name. It involves designing, building and retrofitting the places we live and work in a more sustainable way.

A GEOFIT poster was also displayed in the virtual room of Sustainable Places 2020.

Participating projects wereSWS-Heating – HYBUILD – CREATE – TRI-HP – HYCOOL – SHIP2FAIR – SUNHORIZON – Heat4Cool – GEOFIT – SCORES – Innova microSolar – Hybrid BioVGE – RES4BUILD – SolBioRev – FRIENDSHIP

Chair of the workshop: Andrea Frazzica (CNR ITAE) – partner of GEOFIT

Third General Assembly in Vienna

From the 7th to the 9th of May the GEOFIT consortium gathered in Vienna to hold their third general assembly. The meeting was organised by AIT (Austrian Institute of Technology) in their premises located in Giefinggasse, which also put together a traditional Austrian dinner in the city centre for all partners to enjoy the food and carry on discussing emerging ideas.

Significant progress were made regarding the core hardware technology to be installed on the pilot sites during this three-day meeting. Very important decisions were made on the coordination of work packages. 

Highlights included the management of data gathering and analyses from the pilots’ hardware implementation, and reviewing the advances made regarding the advances on the overall system and building integration for efficient management.

AIT also organised a visit to their impressive lab premises where all partners could see by themselves the prospective advances that can be reached in geothermal energy development. The building itself had implemented energy efficient tools that help reduce energy consumption.

On top of the general assembly a very interesting stakeholder workshop was held on the 8th May with participation from AIT -that was also the organiser- GROEN, CDP and Uponor were all partners participated. 

The consortium closed the meeting  having established clear goals for the next 6 months and looking forward to the work ahead.

Control Solutions for Air-conditioning, Refrigeration and Heating & Energy Efficiency

Control solutions for air-conditioning, refrigeration and heating & energy efficiency

Article by Raul Simonetti from CAREL

From a control point of view, the energy efficiency opportunities can be grouped into three approaches:
1. Product-level approach
2. System-level approach
3. Supervision and IoT

Read more