The GEOBIM Platform

In the GEOFIT project, heating and cooling components design and integration are developed for the different layouts and demo-sites and comprise a detailed design and description of the different subsystems or components to form a complete system. Key elements and components, as well as their specifications, are being developed and inventoried as part of the GEOFIT project activities. As in previous work, the deployment of low-invasive risk assessment, site-inspection, and worksite-building monitoring techniques extend its use as a monitoring tool for geothermal based retrofitting operations and deploy novel tools enabling the view of assets in a cartographic or a geographical environment and comparing with the information stored into GIS collectors and the Web Map Services (WMS). A common data environment containing GIS/BIM models/sensor data allows users to locate, map, update and share objects and subsurface utility information simultaneously, contributing to the realization of a new “GEOBIM platform”. The objective of the GEOBIM platform is to assess and verify the integration of the GEOFIT solutions in specific cases developing the respective different BIM models over a geographical information layer, aiming at replication and modularity of the solutions, outputs for exploitation, impact assessment, and dissemination of the results. The implementation of the previously defined system is addressed for buildings with different typologies and energy demands. Then, integration of the conditions and the building’s engineering specifications are defined within the GEOBIM platform.

The GEOBIM platform considers the scalability and flexibility of the data integration and analysis tools development to support interoperability among the elements installed. The design inputs come from:

    1. Boreholes and ground excavations information
    2. Geothermal heat exchangers designs
    3. Ground source heat pumps designs
    4. Heat pumps designs
    5. Heating and cooling systems designs
    6. Sensors information
    7. Simulations data

By covering the 7 dimensions of the #BIM approach, the GEOBIM platform implements the following functions:

  • Project visualization
  • Data management
  • Demo-site analysis functions
  • Geothermal performance
  • Heating/Cooling performance
  • GEOFIT assets management
  • The lifecycle of systems and assets

Within the GEOBIM platform development (understood as a common data environment), model-based cooperation is the advanced portrayal of the general GEOFIT development process. This portrayal is made in collaboration with the different partners involved in the design, modeling, construction/fabrication, installation, and commissioning, who utilize different CAD-based tools. The Common Data Environment (CDE) is characterized as a typical advanced task space, which gives very much characterized collaborative territory to the undertaking partners joined with clear status definitions and a strong work process portrayal for sharing and endorsement forms and objects data.

Written by Sergio Velasquez, from IDP

Want to learn more?

Click on this link to have a look a the 10 Geobim videos posted on the project’s Youtube channel and thank you for watching!

Videos produced by COMET


SIART and IDSGEORADAR perform structural monitoring at Sant Cugat pilot

From 27th to 31st July, SIART and IDSGEORADAR were at Sant Cugat pilot for structural monitoring, during the same week drilling works started. The goal was to perform structural monitoring before and during drilling, and see any impact in the school buildings.

IDSGEORADAR installed a Hydra-G system which monitored real-time measurements of sub-millimetric displacements in the administrative building and in the primary school. This system provides the high-accuracy and resolution radar technology. The system was accompanied by an optical and infrared HD camera providing real- time visual inspection of monitored area, draping radar data on a 3D model of the scene created using the radar system.

On the other hand, SIART installed several accelerometers in both buildings, administrative and primary school, to monitor vibrations before and during the first drilling carried out on 31st July. The goal of monitoring before drilling works is to know the building frequency, and see, once the drilling starts, if it has changed due to the vibrations propagation throughout the terrain. Once data has been captured, SIART will analyze them and present some results.


Whole installation at Pins del Vallès School.


Image 2: On the left: one of the accelerometers installed by SIART; On the right: Hydra-G system and camera installed by IDSGEORADAR.

Drilling works have started at the Sant Cugat pilot site

On 31st July, Catalana De Perforacions (CDP) started the drilling works at the Sant Cugat demo site. The design of the geothermal field consists of 12 boreholes up to 120m deep and one Horizontal Directional Drilling (HDD).

Image 1: location of the 12 boreholes.

While drilling the first well, some problems with the ground material, mainly clays, and the groundwater level at depths beyond around 60 meters were faced. The borehole heat exchangers are double U PERC 100 SDR 11 PN16, with a diameter of 32mm.

On the other hand, on 3rd of August, the works related to the horizontal connection between the collection chamber and the plant room where the Ground Source Heat Pump (GSHP) will be installed, also started.

These works, including the geothermal field and the horizontal connection between the chamber and the plant room, should be completed on 31st August according to schedule.


Image 2: the second borehole drilled


Image 3: excavation of the collection chamber of the pipes coming from the 12 boreholes


GEOFIT: Stakeholders and markets, a commercial approach

The stakeholders in a building retrofit project often are unfamiliar with shallow geothermal energy (SGE) technology and potentially have conflicting requirements [MUSE, 2019]. The following table shows the influence and interest of (in)directly involved stakeholders of typical SGE for building retrofit projects, in the framework of suggested management principles.


GEOFIT stakeholder matrix

Table 1. Preliminary GEOFIT stakeholder matrix


Building upon results of ‘sister projects’ such as the aforementioned MUSE, as well as GEO4CIVHIC and GRETA among others, GEOFIT takes a close look at the wide spectrum of SGE stakeholders in order to develop commercial-ready solutions. In order to gage SGE for building retrofit viability in Europe from a commercial standpoint, the typology of existing building stock is a critical factor. Therefore, one of the key images for this purpose comes from the Buildings Performance Institute Europe [1], shown below:


European Buildings at a glance


Another focus of GEOFIT Market Analysis is the sizing of market opportunities, defined by the specific technologies or ‘markets’ that together make up the full GEOFIT solution set. Initially investigated ‘markets’ include ground source heat pumps, heat exchangers, structural health monitoring,  geographic information systems, building information modelling, building energy management systems, architecture, engineering, and construction, horizontal directional drilling, project management software and services, heating, ventilation, and air-conditioning, and drones.



New stakeholder workshop in Austria – 8 May 2019

Stakeholder workshop
Geothermal Energy and Ground Source Heat Pumps In Austria:
‘The Geofit solution’

Join us for an open panel discussion on the status of geothermal energy in context with ground source heat pumps and how the GEOFIT project is using the latest geo technologies for energy and cost efficient building retrofitting.

  • Date: Wednesday 8th May 2019
  • Time: 17:00 – 18:30 Uhr
  • Venue: Giefinggasse 2, 1210 Vienna