Design Framework and Laboratory Experiments for Helix and Slinky Type Ground Source Heat Exchangers for Retrofitting Projects

Title: Design Framework and Laboratory Experiments for Helix and Slinky Type Ground Source Heat Exchangers for Retrofitting Projects

MDPI AG, Processes 10, no. 5: 959, Special Issue “Advances in Integrated Geothermal Energy Systems”

Language: English

Authors: Kling, Stephan (*1)Haslinger, Edith (*1)Lauermann, Michael (*1)Witte, Henk (*2)Reichl, Christoph (*1)Steurer, Alexander (*1)Dörr, Constantin (*1)

*1 Department for Sustainable Thermal Energy Systems, AIT Austrian Institute of Technology GmbH, 1210 Vienna, Austria
*2 Groenholland Geo Energy Systems, 1059 Amsterdam, The Netherlands
Abstract: The focus of the experimental work was on shallow spiral geothermal heat exchanger configurations. Real-scale experiments were carried out for vertically oriented spiral collectors (helix) in sand and soil. One objective was to develop a measurement concept in laboratory environment to create a framework for a validated database. This database serves as the basis for further and new development of engineering design tools. To achieve the highest possible data-point density in the observed environment, temperature sensors and a fiber-optic temperature measurement system (DTS) were used. Soil probes were taken in situ before and after the measurements and analyzed at a thermophysical laboratory to determine material properties. The heat flow was controlled by an electric heating cable, which was installed in the form of a spiral-shaped heat exchanger in a 1 m3 container. To guarantee constant boundary conditions, the measurements were carried out in a climate chamber at a defined ambient temperature. The evaluation of the transient response behavior is spatially resolved. The results are coordinate-based temperature points, which describe temperature gradients in all axes of the container over time, which are combined with known soil properties. The collected data was used to develop computational fluid dynamic (CFD) models, which are used to extend the variety of geometry and soil configurations for developing new design tools.

Raw data is available for download here.

Geofit: Experimental Investigations and Numerical Validation of Shallow Spiral Collectors as a Basis for Development of a Design Tool for Geothermal Retrofitting of Existing Buildings

Conference paper presented in European Geothermal Congress 2022 held in Berlin, 17-21 October

Title: Geofit: Experimental Investigations and Numerical Validation of Shallow Spiral Collectors as a Basis for Development of a Design Tool for Geothermal Retrofitting of Existing Buildings

Language: English

Authors: Stephan Kling (*1), Michael Lauermann (*1), Henk Witte (*2), Christoph Reichl (*1), Alexander Steurer (*1), Constantin Dörr (*1), Dragisa Pantelic (*1), Robin Friedrich (*1)

*1: AIT Austrian Institute of Technology
*2: Groenholland Geo-energysystems BV

Abstract: The H2020 GEOFIT (grant no. 792210) project will implement and demonstrate easy-to-install and economical geothermal systems in combination with heat pumps for energy-efficient building retrofits at five pilot sites across Europe – a historic building (ITA), a school (ESP), an indoor swimming pool (IRL), an office building (FRA) and a single-family house (IRL) (GEOFIT,2018). Heat pump tests and experimental laboratory tests with shallow geothermal heat collector types are carried out in climate chambers at the AIT. Material data of different soil types are determined in the thermophysics laboratory. Furthermore, CFD simulations of the conducted experiments are calculated with ANSYS Fluent. All this provides data and know-how for the development of a design tool for ground collector configurations such as helices and slinky loops, which are particularly relevant for building retrofits in GEOFIT. Experimental work focused on near-surface spiral geothermal heat exchanger configurations that can be installed at a maximum depth of five metres. Real-scale experiments were carried out for vertically oriented spiral collectors (helix) in real soil. One objective was to develop a measurement concept in the laboratory environment to create the framework for a reliable database. This database is used as a basis for the further development or new development of engineering design tools. Distributed resistance temperature sensors and a fibre-optic temperature measurement system (DTS) were used. The moisture content of the soil was recorded using soil moisture sensors. A heat flow was conditioned by means of a helix shaped electric heating cable in a 1m³ cuboid soil container. The measurements were carried out in a climate chamber at a defined constant temperature of 10 °C. The evaluation of the transient response behaviour is spatially resolved. This results in coordinate-related temperature points, which describe temperature gradients in all axes of the container over time. Three different types of soil were investigated. The temperature behaviour of humus soil, sand and a mixture of these was investigated experimentally in smaller experiments and the material data such as heat capacity, thermal conductivity and density were determined thermophysically in the laboratory. Based on this data, a CFD model was developed which can be used to modify the geometry parameters of the helix.

Raw data is available for download here.