Performance Analysis of a Geothermal Radiant Cooling System Supported by Dehumidification

Article published in Energies

Title: Performance Analysis of a Geothermal Radiant Cooling System Supported by Dehumidification

Datasets: “Building energy simulation data results” and “Acquired data from existing and/or new installed meters or from existing BEMS (pre intervention EcoSCADA monitoring data)” – Raw data is available upon request. Follow the link and fill the request form.

Language: English

Authors: Henrikki Pieskä (*1) , Adnan Ploskić (*1,2), Sture Holmberg (*1), Qian Wang (*1,3).

*1: Division of Sustainable Buildings, School of Architecture and the Built Environment, KTH Royal Institute of Technology, Brinellvägen 23, SE, 10044, Stockholm, Sweden
*2: Bravida Holding AB, Mikrofonvägen 28, SE, 12637, Hägersten, Sweden
*3: Uponor AB, Hackstavägen 1, SE, 72132, Västerås, Sweden

Abstract: Space cooling demand is increasing globally due to climate change. Cooling has also been linked to all 17 sustainable development goals of the United Nations. Adequate cooling improves productivity and thermal comfort and can also prevent health risks. Meanwhile, policy initiatives such as the European Union’s Green Deal require participants to cut greenhouse gas emissions and reduce energy use. Therefore, novel cooling systems that are capable of efficiently producing high levels of thermal comfort are needed. Radiant cooling systems provide a design capable of fulfilling these goals, but their application in hot and humid climates is limited due to the risk of condensation. In this study, we compare the performances of radiant cooling systems with and without dehumidification. The studied systems are supplied by geothermal energy. The study is conducted using building energy models of a small office building belonging to a three-building school complex located in Sant Cugat near Barcelona in Spain. The studied location has a Mediterranean climate. The simulations are conducted using IDA Indoor Climate and Energy 4.8 simulation software. The results show that the radiant cooling system with dehumidification (RCD) produces considerably improved thermal comfort conditions, with maximum predicted mean vote (PMV) reached during the cooling season being 0.4 (neutral) and the maximum PMV reached by the radiant cooling system without dehumidification (RC) being 1.2 (slightly warm). However, the improved thermal comfort comes at the cost of reduced energy and exergy efficiency. The RCD system uses 2.2 times as much energy and 5.3 times as much exergy as the RC system. A sensitivity analysis is also conducted to assess the influence of selected input parameters on the simulation output. The results suggest that maximising dehumidification temperature and minimising ventilation flow rate can improve the energy and exergy efficiency of the RCD system while having a minor effect on thermal comfort.