The goal of WP3 is to develop an integrated design framework for novel ground (slinky/earth basket) type shallow heat exchangers. This design framework, based on existing and new models of heat transfer and on experimental data, will be implemented in a design- and engineering calculation tool to support the implementation of these new technologies in the market.
This deliverable provides a description of the engineering tool developed in WP3. The purpose of the engineering tool is to provide a consolidated methodology for the design of different ground heat exchangers. The engineering tool provides:
- Calculation of the temperature response of different types of ground heat exchangers to an energy load.
- Methods for sizing of different types of ground heat exchangers.
- Calculation of pressure drop in the ground heat exchanger.
- User interface to select and define the ground heat exchanger and associated parameters, present results of the design calculations and a framework for project / design management.
The engineering tool has been developed in the python programming language. The tool has been validated by comparison with other calculation methods and by comparing with data collected in the Geofit project by partner AIT.
The design framework (deliverable D3.2) defined the goals of the (thermal and hydraulic) design (especially sizing) of the ground source heat exchanger, as a function of different boundary conditions (building energy demand, soil thermal parameters, required system performance etc.). The engineering tool provides the calculation methods for the overall system design and will support the engineer in the choices of heat exchanger technology (vertical, horizontal or earth basket/slinky) and other design parameterizations.
This deliverable describes the engineering tool developed in WP3, this version (October 2020) provides background information on the core of the engineering tool, specifically the different calculation modules as well as a first draft of the design project relational database and graphical user interface.
It is the first implementation of a tool that allows all different types of ground heat exchangers to be evaluated in one consolidated environment.