

GEOFIT External Training

Perugia Pilot (UNIPG)

27/09/22 – Sant'Apollinare PILOT (Italy)

This project has received funding from the H2020 programme under Grant Agreement No. 792210

Demo Site – Sant'Apollinare Fortress (Perugia)

The case study **historic building** is represented by an old stable located inside a Benedictine fortress, **Sant'Apollinare Medieval Fortress**, **situated in Perugia** (Italy).

It is composed by **three different and detached buildings**: the main fortress, the exstable (which represents the pilot case study building) and the drying kiln.

GBC HB (Historic Building) Certification

The major renovation interventions concluded are: high-performance building envelope, recycled cork insulation, high-albedo materials for the outdoor areas, seismic consolidation, high efficiency system (Mechanical Ventilation), ...

The building is the **first worldwide** that received the certification by **GBC Historic Building**[™] protocol (**Gold Certification**).

	Historical Valence	Achieved score:	3/20
	Sustainable Sites	Achieved score:	6/13
	Water Efficiency	Achieved score:	7/8
	Energy & Atmosphere	Achieved score:	29/29
9	Materials & Resources	Achieved score:	5/14
9	Materials & Resources Indoor Environmental Quality	Achieved score: Achieved score:	5/14 13/16
	Materials & Resources Indoor Environmental Quality Innovation & Design	Achieved score: Achieved score: Achieved score:	5/14 13/16 5/6

Certification level reached: 72/110 GOLD

System design

The energy retrofit design process concerned:

- 1. Ground Heat Exchangers
- 2. Hybrid Heat Pump
- 3. Interface between the new and the existing system

Ground heat exchangers

Closed-loop GHEX produced with pipes made of polyethylene for heating and cooling.

Design Overview

- Based on simulated load data of 12 kW heating and 6 kW cooling.
- Estimated 24 hour heating peak load and 4 hour cooling peak load.

Ground heat exchangers

- Excavations up to 2.5 m with 50 cm of sand above and below the pipelines.
- **Dripping system** introduced to irrigate the ground and locally increase thermal conductivity.
- The excavated to backfill the area.

Ground heat exchangers

- Shallow excavation (up to 2.5 m) SLINKY GHEX (2 m deep)
- Nr of parallel trenches: 5;
- Distance between trenches: 1.35 m;
- Average length per trench: 24 m (covering a total of 123m);
- **Ring diameter**: 1.1 m.

Hybrid Heat Pump

Consists of three main components:

- 1. Gas boiler;
- 2. Adsorption unit;
- 3. Vapor compression unit.

Hybrid Heat Pump

The gas boiler is operated as heat source to drive the adsorption cycle.

The gas-driven heat pump is **coupled to the compression cycle**, which is mainly employed to **provide space cooling**.

Ground source heat exchanger represents the **heat source/sink** for the operation of the overall system in winter and summer.

Compared to electric-driven systems, **the thermally-driven heat pump requires a lower amount of heat at the evaporator**, thus allowing the installation of a **smaller geothermal field**, which is a beneficial feature when evaluating retrofitting solutions.

Existing system will be maintained as backup and maintenance reasons. Considering the use of the building, different systems could be showed during training and students' visit.

Pre-intervention monitoring

Energy Monitoring

- Electricity consumption
 - \rightarrow (whole building)
- Heat consumption
 - \rightarrow (whole building)
- Gas consumption
 - \rightarrow (whole building)

Microclimate Monitoring

- Indoor temperature
- Indoor CO₂
- Indoor relative humidity
- Noise level
- Outdoor temperature
- Outdoor relative humidity
- Pressure
- Wind gauge

Structural monitoring

- Comfort analysis
- Structural damages
- Ambient vibration tests

Microclimate and energy pre-intervention monitoring

Nr	Source/Type	Parameter (units)	Data acquisition	Measurement point (By UNIPG - iLECO)
1	Electricity meter	Electricity power (W) Electricity consumption (kWh)	15 min 60 min	General electric panel (underground floor) (maximum power registered every 15min)
2	Heat meter	Heating consumption (kWh)	15 min	Near the existing boiler (technical room)
3	Gas meter	Gas consumption (m3) Progressive Connection p the outdoor a		Connection point to the authority line (near the outdoor access)
4	Climate station (main station) Netatmo	Indoor T (°C) Indoor RH (%) Noise level (dB) Indoor CO ₂ (ppm)	15 min	Office (ground floor)
5	Climate station (outdoor module) Netatmo	Outdoor T (°C) Outdoor RH (%)	15 min	North-West façade
6	Climate station (wind meter) Netatmo	Wind speed (km/h) Wind direction (°N)	15 min	North-West façade
7	Indoor microclimate station UNIPG	Indoor T and RH (°C) (%) Indoor CO ₂ (ppm) VOC (ppm) MRT (°C) Air speed (m/s) Turbulence (%)	10 min	Office (ground floor)

Microclimate and energy pre-intervention monitoring

Nr	Source/Type	Parameter (units)	Data acquisition	Measurement point (By UNIPG - iLECO)
8	Climate station (outdoor) UNIPG	Outdoor T (°C) Indoor RH (%) Wind speed (m/s) Wind direction (°N) Pressure (hPa) Global radiation (W/m ²) Direct radiation (W/m ²) Outdoor CO_2 (ppm) Precipitation (mm)	10 min	North-West (next to the gate)

HBIM model

Building model: simplified Revit model using **HBIM** (Historical Building Information Modeling).

The same HBIM model is used both for structural and microclimate monitoring.

Methodology Architecture

Flowchart representing the methodology proposed to evaluate the structural performance of historic buildings and the human-centric comfort of their occupants in HBIM.

1 Human-centric Comfort

Vibration Annoyance Assessment:

Vibration annoyance assessment for the occupants of historic buildings according to the prescriptions provided by the Italian Technical Standard UNI 9614.

A study of vibrations is carried out in order to assess their influence on the comfort of people in the building, considering acceleration data and environmental parameters.

Its application includes vibrations produced by sources that are both internal and external to the monitored structure, yet excluding those of seismic nature.

Results: within the regulatory limits.

The vibrations induced by the excavation phases have not affected the comfort of the people.

1 Human-centric Comfort

Indoor Microclimate:

Shows the **measurements made by dedicated microclimate monitoring sensors**, both inside and outside the building in a selected time interval.

Measurement setup adopted to perform indoor and outdoor microclimate monitoring with details of the designed Revit family for the indoor module

Screenshots from the Indoor microclimate module used to process and visualize the microclimate measurements acquired from the sensors.

1 Human-centric Comfort

Predicted Mean Vote and Predicted Percentage of Dissatisfied Computation:

To assess the human-centric thermal comfort conditions under the prescriptions provided by the Technical Standard EN ISO 7730.

This application processes the data that potentially are continuously monitored in terms of indoor and outdoor microclimate conditions.

2 Structural Performance

Vibration-Induced Damage Assessment:

Assessment of **vibration-induced structural damages** under the prescriptions provided by the Italian Technical Standard UNI 9916.

Accordingly, its application includes vibrations produced by sources that are both internal and external to the monitored structure, such as those induced by explosions, tracks, and construction sites, yet excluding vibrations of seismic nature.

Excavation operations produced peak velocity values that were within the regulatory limits, therefore not capable of inducing structural damages.

2 Structural Performance

Operational Modal Analysis:

Assessment of the dynamic response of a structure under ambient vibrations by means of the retrievement of its modal features. Also in this case, the vibrations induced by the excavation operations did not lead to structural changes in the building.

Continuous SHM:

Once the **baseline natural frequencies** of a structure are identified, **this module allows their tracking over time**, which can be used for **damage detection** via statistical pattern recognition approaches **in long-term monitoring** applications by using control charts.

Continuous SHM module: (a) Tracking of the main natural frequencies of the case study building; (b) Tracking of the MAC values of the tracked mode shapes; (c) Tracking of the MPC values of the tracked mode shapes.

Installation steps

• On **December 3rd, 2020** civil works started in Perugia Pilot with the support of the partners IDSGEORADAR for performing a Ground Penetrating Radar measurements survey and R2M for performing UAV flights with and without thermal camera.

• The day before, the HP with the new gas boiler and the water thank were delivered in the pilot thanks to FAHR.

UNIPG completed the **Structural Health Monitoring** (SHM) before, during, and after the drilling phase (All the conditions were satisfied without any displacement).

• After one week, shallow excavations up to 2.5 m deep were completed and the area was ready to put 50 cm of sand bed to increase the **conductivity** on the ground.

• To be able to install the **GHEXs** considering the exactly design geometry, GROEN advised the use of metal grid that helped the company to respect all the design dimensions.

On January 11th, 2021 the company in charge of the whole field work started the installation of slinky GHEXs (2 m deep) considering 5 parallel trenches, with 1.35 m mutual distance, 24 m average trench length, and 50 rings for each trench.

• After the GHEXs installation, on **January 18th**, GROENHOLLAND came at Perugia Pilot to install the FOC monitoring with a particular approach that allows to check remotely the performance of the new system, while matting underground temperature.

• To increase the innovative aspects and the scientific relevance, UNIPG decided to install two parallel tubes of a **drip plant** (on the first two trenches) to carry out experimental evaluations and comparison considering different boundary conditions and configurations, such as with varying ground hydration content.

 Civil works were completed on January 28th with all the excavated area backfilled with other 50 cm of sand and the ground excavated material that was reused on site.

• All the heating/cooling system components (heat pump, boiler, tank, chiller) were installed at UNIPG pilot and connected to the existing system.

• On April 21st, 2021 UNIPG with CNR on site and FAHR from remote connection moved forward with the commissioning of the GeoFit system.

4. GEOFIT system - overview

Microclimate and energy post-intervention monitoring

Nr	Source/Type	Parameter (units)	Data acquisition	Measurement point (By UNIPG - iLECO)
1	Electricity meter Electrex	Electricity power (W) Electricity consumption (kWh)	15 min 60 min	General electric panel (underground floor) (maximum power registered every 15min)
2	Electricity meter Gavazzi EM210	System electricity consumption (kWh)	15 min	System electric panel (technical room)
3	Heat meter AR-Therm Excelsius M-Bus	Heating and cooling consumption (kWh)	Progressive (15 min with BMS)	Near the existing boiler (technical room)
4	Gas meter Domusnext G4 M-Bus	Gas consumption (m3)	Progressive	Connection point to the authority line (near the outdoor access)
5	BMS monitoring XWeb	Room T (°C) Room RH (%) 	15 min	Building/each conditioned room
6	Climate station (main station) Netatmo	Indoor T (°C) Indoor RH (%) Noise level (dB) Indoor CO ₂ (ppm)	15 min	Office (ground floor)
7	Climate station (outdoor module) Netatmo	Outdoor T (°C) Outdoor RH (%)	15 min	North-West façade
8	Climate station (wind meter) Netatmo	Wind speed (km/h) Wind direction (°N)	15 min	North-West façade

4. GEOFIT system - overview

Microclimate and energy post-intervention monitoring

Nr	Source/Type	Parameter (units)	Data acquisition	Measurement point (By UNIPG - iLECO)
9	Indoor microclimate station UNIPG	Indoor T and RH (°C) (%) Indoor CO_2 (ppm) VOC (ppm) MRT (°C) Air speed (m/s) Turbulence (%)	10 min	Office (ground floor)
10	Climate station (outdoor) UNIPG	Outdoor T (°C) Indoor RH (%) Wind speed (m/s) Wind direction (°N) Pressure (hPa) Global radiation (W/m ²) Direct radiation (W/m ²) Outdoor CO_2 (ppm) Precipitation (mm)	10 min	North-West (next to the gate)

Post-intervention monitoring

Energy Monitoring	Microclimate Monitoring	Additional monitoring
Electricity consumption	Indoor temperature	Temperature fiber optic
\rightarrow (whole building)	Indoor CO ₂	monitoring
Heat consumption	Indoor relative humidity	Internal monitoring of the
\rightarrow (whole building)		heat pump and chiller
	Noise level	System heat production
Gas consumption	Outdoor temperature	System energy consumption
Structural monitoring	Outdoor relative humidity	
Ambient vibration tests	Pressure	monitoring of the circuits
	Wind gauge	 Water consumption from the drip irrigation system

Results from the on-site monitoring will be used to calculate the GEOFIT saving:

- monitored energy consumption of the GeoFit system;
- monitored COP of the hybrid HP.

currently

UNIPG is

Structure of the new monitoring/managing system

updating the existing

Parameter	Unit	Time
		step
T_air (for each room)	°C	
RH_air (for each	0/	
room)	/0	15 min
T_ext	°C	
T_out radiant floor	°C	

Paramotor	Unit	Timo stop
Falameter	Unit	Time step
T SET	°C	
Setpoint Burner	°C	
Setpoint Heating	°C	
T HT IN	°C	
T HT OUT	°C	
T MT IN	°C	
T MT OUT	°C	
T LT IN	°C	
T LT OUT	°C	
T LT OUT intern	°C	15 min
T HT SP	°C	
Volume flow HT circuit	L/h	
Volume flow MT circuit	L/h	
Volume flow LT circuit	L/h	
Power consumption	Wh	
T LT IN CC	°C	
T LT OUT CC	°C	
T MT IN CC	°C	
T MT OUT CC	°C	

4. GEOFIT system - overview

New layout of the monitoring/managing system webpage

DEMOTE	le	e.REMOTE	
ENERGY MANAGEMENT SISTEMI DI REGOLAZIONE E SUPERVISIONE PER IL RISPARMIO ENERGETICO	ENERGY MANAGEMENT	SISTEMI DI REGOLAZIONE E PER IL RISPARM	SUPERVISIONE
group	HOME SET SESTEMA SET AMILENTER	VINC SERVICE CONTROL PRIMET	Low User1
	ELENCO ALLARMI ATTIVI. Pri T	ET SISTEMA RAMETRI GENERALI award centre O merrito I moeralize Antonica ANO SEMINTERRATO	
the minimum temperature in the building when no-one is present. Time bands: from 7 p.m. to 7 a.m. For public holidays.	ET SIGNAL MANO SEMINTERRATO. » PIANO TERRA » PIANO PRIMO » IMPOSTAZIONI ACS	Indersone Statems OFF O AUTO O MAN O Incersiture Economy - 101 9 + Incersiture Contor: Incersiture Contor: Inc	Ç
Comfort Temperature: the minimum temperature that must be on the floor when the building is occupied by people. Time bands: from 7 a.m. to 7 p.m. For weekdays.	(In In	FASCE ORARIE FERIALI FA SALW RESET DOSTAZIONI: OFE-II sistema è sperito, le samde lavorane in base alla 2 AUTO. Il sistema è acceso e funziona in modalità crec orai prestabiliti e a rispetitiv Set di Temperatura (Econ compondente fasca nona per cascuna zona MAN. Il sistema è acceso o funziona per ogni amb impostational reacultmente postazioni POMPA di CALORE:	ASCE ORARIE FESTIVE I Tempertura Antigolo notermostato ovvero in base a nomy e Contort) impostati nella iente su tivedi di temperatura
These parameters vary depending on the summer or winter season.	Si Ma Fin	alità di Funzionamento INVER	SA DAG MIGATO

4. GEOFIT system - overview

New layout of the monitoring/managing system webpage

💻 🕹 unipg	Tutti v RS1-022 geofit - sApollin	are		
Wab	Tempo Reale		Comandi	Parametri
5.6.2 XWEB EVO 30/11/2021 19:57	Allarme		80 68°C	
n 🛱 🐣 🔤	Solo Attivi 👻 🖉 Ricerca		60	Weil3 cc wwwwwwwwwwwwwwwwwwwwww
V DISPOSITIVI	Analogiche	1		
Dashboard	C. Chiller Mode	100	ې ⁵⁰	39.6 °C
Dispusity)	Cooking Power Calculated CC	1 kww	1320 °C	
🔺 Registro Asarmi 🛛 🙆	Prequency Convector	5 112	30	Marth Marth 27.1 °Ch
 Impostazioni 	M Intel Temp HT circuit	21 E 17	155%	10.5 %
	J MM Temp LT - CC	26.4.°C	Minimum Minimum	mannes Millimenness Minore Manufactores
* LAYOUT	Intel Temp. LT sincult	35 9 °C	30/11 30/11	30/11 30/11 30/11 30/11
🗢 Condizioni Ambientali [TAB]	C Intel Temp MF - CC	26.9.°C	17:00:00 17:30:00	18:00:00 18:30:00 19:00:00 19:30:00
S Param COGENERATORE	Intel Temp MT clicuit	17-/C	30/11/2021 52.2 °C 34.2	2 °C 17.5 °C 16.8 °C Q
e Param INPUT	🖸 Outuz Tempi HT draut	D* 5.87	18.1 °C 68	°C 31.1 °C
😎 Param. OUTPUT	Outlet Temp. LT - CC	26.3 °C		
👳 Parametri IMPIANTO	Outlet Temp. LT circuit	16.8 °C	Periferica	RS485 1 (RS1)
😔 Piano PRIMO	Outliet Temp LT intern circuit	68 °C	Indirizzo	22
😔 Piano SEMINTERRATO	Outlet Temp. MT - CC	à≠c	Modello	sApollinare 240 / 12 1 / 0 1
🥺 Piano TERRA	Outlet Temp. MT circuit	32.3 °C	Nome	geofit - sApollinare
	Set Temp, for the Comp: Cooling	0.C	Descrizione	Regolazione POMPA di CALORE
	Setpoint Cooling	0 °C	Statistiche Comunicazione	Nessun Gruppo 98.44 % Successo, 1.56 % Timeout

What went well

Main tips for future applications

The partners were able to design and install a **geothermal system** on a **historic building** for **energy retrofit.**

Geothermal applications very well fit existing buildings with constraints!

What went well

	Main tips for future applications
The partners were able to design and install a geothermal system on a historic building for energy retrofit.	Geothermal applications very well fit existing buildings with constraints!
The partners were able to develop and use in the specific demo site a holistic and novel approach to geothermal retrofitting , making use of different kinds of analysis, most of which were integrated in BIM (Building Information Modeling)	BIM integration allows to produce a multipurpose smart design tool!

What went well

system.

	Main tips for future applications
We were able to design and install a geothermal system on a historic building for <u>energy retrofit.</u>	Geothermal applications very well fit existing buildings with constraints!
We developed and used a holistic and novel approach to geothermal retrofitting , making use of different kinds of analysis, most of which were integrated in BIM (Building Information Modeling).	BIM integration allows to produce a multipurpose smart design tool!
We were able to integrate the new system controls and monitoring platform on the existing BMS for producing a general management and monitoring	The integration of the new components and monitoring should be designed carefully to fit the existing system!

What went wrong

Main tips for future applications

The project was rather complex as it foresaw the integration of **several technologies and systems**. It was difficult to design the final setup comprehensive of controls and monitoring plan.

Always design a general plan to integrate all features before starting with the installation!

What went wrong

The project was rather complex as it foresaw the integration of **several technologies and systems**. It was difficult to design the final setup comprehensive of controls and monitoring plan.

It was particularly difficult to obtain the **permits from the municipality**.

Main tips for future applications

Always design a general plan to integrate all features before starting with the installation!

Before designing a geothermal retrofit for a historic building, always "test the ground" in terms of needed permission, limitations, and timing!

What went wrong

The project was rether complex on it forecow the	
The project was rather complex as it foresaw the	
integration of several technologies and systems. It	
was difficult to design the final setup comprehensive	1
of controls and monitoring plan.	

It was particularly difficult to obtain the **permits from the municipality**.

Given the **pandemic** and the large occupation of local professionals due to the **extended amount of economic incentives provided at a central level for building energy retrofit**, it was very difficult to interact with the local professionals and bring them to complete the works.

Main tips for future applications

Always design a general plan to integrate all features before starting with the installation!

Before designing a geothermal retrofit for a historic building, always "test the ground" in terms of needed permission, limitations, and timing!

Although pandemic and extreme events cannot be expected, it could be useful to **define a backup plan** in terms of professionals involved!

Thank you for your attention

SMART GEOTHERMAL

UNIPG team

