

Ground Heat Exchangers & Heat Pumps

An integrated design framework for ground heat exchangers and ground source heat pumps

External training | 20.09.2022 | Online

This project has received funding from the H2020 programme under Grant Agreement No. 792210

GEOFIT

GEOthermal systems for energy efficient building retroFITting

- 4 year H2020 project (May 2018-April 2022)
- 24 Partners

JTION

IDS

GeoRadar

- Innovation Action supporting the H2020 Societal Challenge of Secure, Clean and Efficiency Energy
- Part of INEA's Energy Portfolio (Low Carbon Economy (LCE), Renewable Energy Technologies (RET)

PPOPACIÓN

GroenhollanD

-AHRFNHFI

Fuinneamh

Oileáin Árann

Aran Islands Energy

SIART

AJUNTAMENT DE SantCugat

• € 9.7 million cost / € 7.9 million funding

CAREL

Onsiglio Nazional

delle Ricerch

C catalanade

PERFORACIONS

Global Innovation & Commercialization

Motivation

- Ground source heat exchangers (GHEX) and heat pumps provide highly efficient heating and cooling
- For existing building stock few solutions exist, retrofitting in non-urban areas will benefit from lowcost easy to install GHEX such as slinky, horizontal and earth basket GHEX
- BUT: no integrated advanced engineering design tools exist for e.g. slinky loop collectors, earth baskets etc. - installation depend on skills of installers – they are not trained for installing these GHEX

(a) Vertical spiral	(b) Horizontal spiral	(c) Horizontal (flat)	(d) Vertical (upright)	
collectors	collectors collectors		slinky loop collectors	
Placed in vertical	Placed in trenches	Placed lying flat in loops	Placed upright in loops in	
boreholes with a	with a diameter of	in a ca. 2 m wide trench.	a ca. 50 cm wide trench.	
diameter of about 20	about 20 cm width	After the placing of the	After the placing of the	
cm width and 5 m	and 5 m depth. The	loops, the trench is	loops, the trench is	
depth. The loop	loop pitches (i.e. the	backfilled with in-situ	backfilled with in-situ	
pitches (i.e. the	distance between	sediment or with	sediment or with	
distance between	the loops) vary, but	primarily sandy	primarily sandy	
the loops) vary, but	are typically several	sediment ('cable sand')	sediment ('cable sand')	
are typically several	cm.	The loops are either not	The loops are either not	
cm.		overlapping or	overlapping or	
		overlapping at half or a	overlapping at half or a	
		third of the loop	third of the loop	
		diameter.	diameter.	
http://www.rosenthal-	http://www.rosenthal-	https://grabenkollektor.waermep	https://grabenkollektor.waermep	

umpen-verbrauchsdatenbank.de/ umpen-verbrauchsdatenbank.de/

geothermie.de/117.html

geothermie.de/117.html

Content

- Design tool for ground heat exchangers
- Development of an integrated design approach *integrated tool, iterative design, design documentation*
- New calculation methods for complex GHEX topologies
 - dealing with laminar/turbulent transition
- Far field modelling
- Lab experiments & CFD
- Validation
- Performance analysis
- Engineering tool
- Heat pump
- Wrap-up: Field laboratory

Goal of the design of a ground heat exchanger is to

determine the required the size of a GHEX

As a function of

Heating and cooling energy demand Heating and cooling capacity Required performance

Other boundary conditions (soil thermal parameters, drilling conditions, available space)

Design is not just performing the calculation, but an iterative process

- Seasonal performance and energy savings achieved, under different boundary conditions (such as soil thermal parameters, climate and building characteristics)
- **Technical and operational life of the system**, reflecting the life-expectancy of components depending on material properties and operational conditions (mainly temperature) as well as the temperature evolution of the activated ground volume.
- Balancing between installed capacity, base load and peak load operation and system size, the relative importance of many system characteristics depends on the ratio of thermal capacity and total energy delivered and is moreover affected by the seasonal balance between heating and cooling.
- Sensitivity analysis and validation of the final design, as many different parameters affect the design, but the relative importance may vary very significantly, a sensitivity analysis is usually needed to determine the critical design parameters.

Summary roadmap for project design

Check feasibility and permits required

Collecting and evaluating data needed for the design

Thermal and hydraulic design

Defining design parameters and boundary conditions

Comparing different GHEX solutions

Design calculations: thermal

Local process: individual GHEX construction

Global process: GHEX thermal interactions Sensitivity

Design calculation: hydraulic (pressure drop) Documenting the design process and results

Example, energy demand profile and hybridization

Iterative design: evaluate different approaches to hybridization

- Heat pump only
 - Design for 100% heat demand Heat pump partly
- Feasible for small temperature lifts
- Co-generation heat pump with aux. system
- Heat pump partly covers heat demand
 - Aux. system only above BP

- Co-generation heat pump with aux. system
- Heat pump covers approx. 80% heat demand
- Base load with heat pump

Example, peak capacity and peak load duration

Iterative design: evaluate effect of different capacities and select final capacity and peak load duration

Example, sensitivity

Iterative design: evaluate effect of different parameterizations and possibly collect and analyze additional data

Adapt energy demand profile, e.g. re-evaluate cooling demand

Documentation

2d – g	eology					
Based on informati	ion geological survey	/ or test drilling on site				
Design goal: Inten	ded end-depth bore	holes (m)			120 m	
Summary soil profi	Summary soil profile, soil thermal parameters and backfilling					
Test boreholes to e	end-depth, average o	distance to loca	tion	500 (m)		
Test boreholes, nu	mber of boreholes u	sed		3		
top (m)	bottom (m)	soil type	thermal	heat	backfill	
			conductivity (W/mK)	capacity (MJ/kgK)		
0	5	sand, dry	0.50 ± 0.2	1.20 ± 0.1	sealing clay	
5	45	medium fine	1.90 ± 0.3	2.40 ± 0.2	coarse sand	
		sand				
45	55	clay	1.80 ± 0.4	2.20 ± 0.1	sealing clay	
55	95	medium fine	1.90 ± 0.3	2.50 ± 0.2	coarse sand	
		sand				
95	120	coarse sand	2.30 ± 0.2	2.40 ± 0.2	coarse sand	
		Average:	1.92 ± 0.3	2.37 ± 0.2	coarse sand	
Average yearly surface temperature (°C)			16.2			
Average minimum monthly temperature(°C)			9.1			
Average maximum monthly temperature (°C)			24.2			
Depth of isothermal surface (m)			15			
Average temperature below isothermal surface (°C)			16.6			
Geothermal gradient (K/m)			0.0			
Geothermal flux (W/m ²)			0.0			
Geohydology Porous			Porous/f	ractured		
Average Darcy grou	und water flow	< 10				
aquifers (m/year)						
Total length of aquifer (m) 105						

Global process – temperature evolution in the ground

- Temperature evolution at GHEX wall
- Interaction between all GHEX in ground volume
- Include near-surface seasonal temperature variations
- Include deep geothermal gradient

Local process – thermal resistance fluid to ground and pressure drop

- Set of equations to calculate the thermal resistance for different geometries (*dealing with turbulent/laminar boundary*)
- Set of equations to calculate the pressure drop for different geometries
- Correlations for temperature-dependent fluid properties for water, monoethylene and mon-propylene glycol

Standardized methodology for GHEX design calculations

- Conductive heat flow in the ground
- Solver for temperature effect @ distance from GHEX
- Solver for fluid temperature as function of capacity and thermal resistance
- Superposition of temperature effects in space and time
- Superposition of long term and short term response
- Decomposition of energy-demand profile
- G-function approach to speed-up calculations

Decomposition of energy-demand profile

- Solver only calculates for contant load for total time
- Superposition of additional load steps solutions in time
- Decomposition of energy-demand profile

G-function

Finite Line Source + G-function approach

FLS is the "workhorse" of conventional (vertical) GHEX G-function is standard approach for computational efficiency

1D (Vertical Borehole Heat Exchanger

$$T(r,z,t) = \frac{q_0}{4\pi\lambda} \int_0^H \left[\frac{1}{r_1} \operatorname{erfc}\left(\frac{r_1}{2\sqrt{\alpha t}}\right) - \frac{1}{r_2} \operatorname{erfc}\left(\frac{r_2}{2\sqrt{\alpha t}}\right)\right] dh$$

2D (horizontal / slinky GHEX)
$$\Delta T_{j \to i}(t) = \frac{q'R}{8\pi^2\lambda} \int_0^{2\pi} \int_0^{2\pi} \int_0^{2\pi} \left[\frac{\operatorname{erfc}(d(P_j, P_i)/2\sqrt{\alpha t})}{d(P_j, P_i)} - \frac{\operatorname{erfc}\left(\sqrt{d(P_j, P_i)^2 + 4h^2}/2\sqrt{\alpha t}\right)}{\sqrt{d(P_j, P_i)^2 + 4h^2}} \right] d\omega d\varphi$$

3D (Earth basket type GHEX) 47

$$\Delta T_{j \to i}(t) = \frac{q'R}{8\pi^2\lambda} \int_0^{2\pi} \int_0^{2\pi} \left[\frac{\operatorname{erfc}(d(P_j, P_i)/2\sqrt{\alpha t})}{d(P_j, P_i)} - \frac{\operatorname{erfc}((d(P_j, P_i) + 2h)/2\sqrt{\alpha t})}{(d(P_j, P_i) + 2h)} \right] d\omega d\varphi$$

Finite line source for vertical ground heat exchangers

Figure 2.5: Finite Line Source method [2]

Finite line source for slinky ground heat exchangers

Fig. 5: 3D view of the horizontal Slinky type GHE model

Fig. 7: 3D view of the vertical Slinky type GHE model

$$d(P_{j}, P_{i}) = \frac{d(P_{ii}, P_{j}) + d(P_{io}, P_{j})}{2}$$
$$d(P_{ii}, P_{j}) = \sqrt{[x_{oi} + (R - r)\cos\varphi - x_{oj} - R\cos\omega]^{2} + [y_{oi} + (R - r)\sin\varphi - y_{oj} - R\sin\omega]^{2}}$$
$$d(P_{io}, P_{j}) = \sqrt{[x_{oi} + (R + r)\cos\varphi - x_{oj} - R\cos\omega]^{2} + [y_{oi} + (R + r)\sin\varphi - y_{oj} - R\sin\omega]^{2}}$$

$d(P_{ii}, P_j)$
$= \sqrt{\left[x_{oi} + (R-r)\cos\varphi - x_{oj} - R\cos\omega\right]^2 + \left[y_{oi} - y_{oj}\right]^2 + \left[z_{oi} + (R-r)\sin\varphi - z_{oj} - R\sin\omega\right]^2}$
$d(P_{io}, P_j)$
$= \sqrt{\left[x_{oi} + (R+r)\cos\phi - x_{oj} - R\cos\omega\right]^2 + \left[y_{oi} - y_{oj}\right]^2 + \left[z_{oi} + (R+r)\sin\phi - z_{oj} - R\sin\omega\right]^2}$
$d(P_{ii},P_{j'})$
$= \sqrt{\left[x_{oi} + (R - r)\cos\varphi - x_{oj} - R\cos\omega\right]^{2} + \left[y_{oi} - y_{oj}\right]^{2} + \left[z_{oi} + (R - r)\sin\varphi - z_{oj} - 2h - R\sin\omega\right]^{2}}$
$d(P_{iov}, P_{j'})$
$= \sqrt{\left[x_{oi} + (R + r)cos \phi - x_{oj} - Rcos \omega\right]^2 + \left[y_{oi} - y_{oj}\right]^2 + \left[z_{oi} + (R + r)sin \phi - z_{oj} - 2h - Rsin \omega\right]^2}$

Finite line source for spiral ground heat exchangers

Thermal resistance between fluid and ground

- Vertical/horizontal GHEX: U-pipe and concentric GHEX
- Slinky and earth basket: spiral type GHEX

(a) (b) Figure 5. Schematic overview of a U-loop and concentric heat exchanger with different resistance terms.

Equations for

- Critical Reynolds
- Nusselt
- Pressure drop

	OVERVIEW EQUATIONS	Straight pipe	Curved pipe	
	Critical Reynolds	2300 (2000 - 3000)	$Re_{cv} = 2300 \left[1 + 8.6 \left(\frac{d}{D} \right)^{0.45} \right]$ Schmidt (1967)	
		$\begin{array}{l} \textbf{Reynolds} < \textbf{Rev} \\ Nu = 3.657 + \frac{0.05565(L^*)^{-1.3315}}{1+0.08386Pr^{0.2}(L^*)^{-0.0550}} \\ & \\ Where L^* = \frac{L}{ReProd} \\ \hline \textbf{Merker (1987)} \\ \textbf{Reynolds} >= \textbf{Rev} \\ \hline 0.023Re^{0.8}Pr^{m} \\ & \\ m \ heating: 0.4; \ m \ cooling 0.3 \end{array}$	$\frac{\text{Reynolds} < \text{Re}_{W}}{Nu = 3.66 + 0.08 \left[1 + 0.8 \left(\frac{d}{D}\right)^{0.9}\right] \text{Re}^{m} P r^{1/3} \left(\frac{Pr}{Pr_{w}}\right)^{0.14}}$ With m = 0.5 + 0.2903 (d/D) ^{0.104} Schmidt (1967) Reynolds > 2.2. 10^4 $Nu = \frac{\left(\frac{\xi}{S}\right) \text{RePr}}{\frac{\xi}{S} \left(\frac{Pr}{Pr_{w}}\right)^{0.14}} \left(\frac{Pr}{Pr_{w}}\right)^{0.14}$	
Nusselt	Dittus Boelter (1930)	$1 + 12.7/\sqrt{5/8} (Pr^{1/3} - 1)^{0.27}$ With $\xi = \left[\frac{0.3164}{Re^{0.21}} + 0.03 \left(\frac{d}{D}\right)^{0.5}\right] \left(\frac{\eta_{uv}}{\eta}\right)^{0.27}$ Gnielinski (1986a); Mishra & Gupta (1979) The term (Pr/Pr2)^{0.24} as well as (Nw/h)^{0.2.27}, when wall and fluid termperature are similar, is 1 and can be dropped. Rev < Reynolds < 2.2 10^4 Nu = \gamma Nu_1(Re_c) + (1 - \gamma)Nu_c(Re = 2.2 + 10^4) y = \frac{2.2 + 10^4 - Re}{2.2 + 10^4 - Re_c} Gnielinski (1986b)		
		Δf Farming (Fanning friction factor = 1/4 th Darcy) (1896) Reynolds < Re: $f = \frac{16}{Re}$ Reynolds > Re:	$P = f \frac{\rho_f L v_r^2}{D/2}$ Reynolds < Re: $f_c = f_c [0.556 + 0.0969 \sqrt{De}]$ With De (Dean number):	
Pressure drop	Pressure drop	$f=\frac{0.0791}{Re}$ Blasius (1913) The denominator is Re^(1/4) according to Fax&McDanaid textbaok "Introduction to Fluid Mechanics"	$Re \sqrt{d/D}$ Hasson (1955) 4500 < Reynolds < 10⁵ & 0 < P/d < 25.4 $f_c = 0.0791Re^{-0.25} + 0.0075 \sqrt{d/D}$ Mishra and Gupta (1979)	

Turbulent / laminar flow and transition zone

- Thermal resistance (and pressure drop) depend on fluid flow regime and especially laminar / turbulent boundary
- This boundary is characterized by the *Reynolds* number (ratio between inertial and viscous forces)
- For straight pipes the critical Reynolds number is usually taken as **2300**
- For curved pipes it is more complex and depends on the ratio d/D

$$Re_{cr} = 2300 \left[1 + 8.6 \left(\frac{d}{D} \right)^{0.45} \right]$$

Spiral heat exchanger

Thermal resistance Spiral / Straight pipe heat exchanger

Lab experiments and CFD modelling

Method

Laboratory experiments

Laboratory experiments

Setup of big box experiment

Data aquisition

Moisture content

Locations of sample extraction

- Samples taken at start + end of experiment
- Determination of mass reduction by drying $\rightarrow \Delta m = m$

Mean Thermal Diffusivity Values for varying Materials and Temperatures				
Temperature (°C)	$lpha$ Moist Sand $(10^{-4} \text{ cm}^2 \text{ s}^{-1})$	$lpha$ Dry Sand $(10^{-4} \text{ cm}^2 \text{ s}^{-1})$	$lpha$ Dry Humus $(10^{-4} \text{ cm}^2 \text{ s}^{-1})$	
-10	60.31	23.52	22.67	
0	X-X-X	21.93	21.24	
10	45.09	22.13	20.33	
20	42.06	21.91	19.14	
25	45.34	x-x-x	X-X-X	
30	45.23	21.58	17.69	
40	50.1	20.82	16.77	
50	54.1	20.17	17.16	
60	57.2	20.78	17.18	
70	58.4	20.03	16.36	

Lab - results

Lab - results

Experiment vs. Simulation

CFD temperature evolution

3.25e+02		ΛΝΟΥΟ
3.23e+02		2019 R3
3.21e+02		
3.19e+02		
3.17e+02	<i>b.</i>	
3.15e+02		
3.12e+02		
3.10e+02		
3.08e+02	C.	
3.06e+02		
3.04e+02		
3.02e+02		
3.00e+02	6	
2.98e+02	6	
2.96e+02		
2.94e+02		
2.91e+02	e	
2.89e+02		
2.87e+02		
2.85e+02		ě.
2.83e+02		

Far field simulations: optimized spatial distribution and thermal interactions

AIT's model (detailed Computational Fluid Dynamics model) used to generate boundary conditions for the far-field simulations

- Extended domain numerical simulations in order to determine the interaction between GHEX under different spatial arrangements and their thermal impact on the surrounding media
 - Definition of three different sets of GHEX arrangements
 - Numerical simulation of the three arrangements using the soil properties and thermal parameters of the experimental facilities at AIT
 - Numerical simulation of the effect of GHEX spacing for one arrangement
 - Numerical simulation of one arrangement considering different types of soil, both dry and wet
 - Long term numerical simulations of one arrangement for three different climate zones (ongoing, only presenting one)

Far field simulations: optimized spatial distribution and thermal interactions

Far field simulations, temperature contours after 100 days

Far field simulations, temperature after 7 days with different spacing (arrangement #2)

Validation

Validation – spiral (earth basket) GHEX

Real helical shape in FLS simplified to stack of rings

First validation with reference case and point cloud around GHEX

 Table 1: Overview of soil thermal parameters and earth basket spiral heat exchanger dimensions used for the validation.

Parameter	Value
Soil thermal conductivity (W/mK)	2.0
Soil heat capacity (J/kgK)	2500
Soil density (kg/m ³)	1000
Soil temperature (°C)	10.0
Buried depth (m)	1.5
Ring diameter (m)	0.35
Pipe outer diameter (m)	0.06
Number of rings	10
Total pipe length (m)	11.04
Pitch (m)	0.1
Thermal load (W/m)	10.24

Figure 10: 3D view of the helical coil and points used for comparison between FLS and CFD simulations.

Validation – spiral (earth basket) GHEX

Real helical shape in FLS simplified to stack of rings

Check match of topology

Validation – steady state

Variations of heat injection rate, soil thermal conductivity

Validation – steady state

Variations of pitch, ring diameter

Validation – transient

Many variations

Using the toolkit performance analysis was conducted for

- Vertical (borehole) type ground heat exchangers
- Slinky type ground heat exchangers
- Spiral/earth basket type ground heat exchangers

Investigated was GHEX construction parameters and operational (system) behaviour for different standardized building and climate types

Modern office, Retrofit office, Modern residential, Retrofit residential Cold, average and warm climate

Construction parameters in vertical GHEX

Conclusion: Shank spacing and backfilling thermal conductivity are important. Flow rate is important, depending on antifreeze mix used The effect of different parameters may also depend on flow regime

Parameter	Laminar fl	ow regime	Turbulent flow regime		
	Absolute	Fractional	Absolute	Fractional	
Length	1.00	0.01	0.01	0.00	
Borehole diameter	0.15	1.50	0.08	0.80	
Shank spacing	-0.20	-4.00	-0.07	-1.40	
Pipe therm. cond.	-0.05	-0.13	-0.08	-0.20	
Backfilling thermal cond.	-0.22	-0.11	-0.21	-0.11	
Soil thermal cond.	0.10	0.05	0.00	0.00	

Effect of thermal resistance introduced by the pipe wall

Conclusion: effects of pipe wall thickness is negligible (< 2%) for typical heat flux rates in shallow GHEX and small (<4%) in medium heat flux rates (vertical GHEX)

Pipe OD & SDR	Pipe ID	R _{pipe}	Temperature difference (K) @ Heat flux (W/m)			ux (W/m)
	(m)	(m.K)/W))	5	10	20	40
PE 100 OD40 SDR11,0	0.033	0.076	0.4	0.8	1.5	3.0
PE 100 OD40 SDR13,6	0.034	0.060	0.3	0.6	1.2	2.4
PE 100 OD40 SDR17,6	0.035	0.046	0.2	0.5	0.9	1.8
PE 100 OD32 SDR11,0	0.026	0.076	0.4	0.8	1.5	3.0
PE 100 OD32 SDR13,6	0.027	0.060	0.3	0.6	1.2	2.4
PE 100 OD32 SDR17,6	0.028	0.046	0.2	0.5	0.9	1.8
PE 100 OD25 SDR11,0	0.020	0.076	0.4	0.8	1.5	3.0
PE 100 OD25 SDR13,6	0.021	0.060	0.3	0.6	1.2	2.4
PE 100 OD25 SDR17,6	0.022	0.046	0.2	0.5	0.9	1.8

Slinky GHEX, ring radius, depth, soil thermal conductivity and pitch

Spiral GHEX, pitch

Summary for shallow GHEX

- Soil thermal conductivity should be 1.5 W/mK or higher.
- Buried depth should exceed 1 meter.
- Minimum ring radius is 0.6 meters.
- Pitch for a slinky type heat exchanger is at least 60% of the ring radius.
- Pitch for an earth basket heat exchanger should be at least 0.3 m (but may depend as well on total number of rings that can be installed in a given depth interval.

System analysis, slinky retrofit residential

System analysis, slinky retrofit residential

Engineering Tool

Engineering tool

Ground Source Energy Designer							
home	project list new project heatpump list new heatpump						
	Hello, geofit. Logout. The Ground Source Energy Designer (GSED) is organised around projects. Each project has one or more GHEX designs, each design has one parameter set (soil, energy, GHEX configuration). Now you can • Add a new project • Edit an existing project • View the results of a project" from the menu.						
	Copyright © 2021 Groenholland Geo-energysystems www.groenholland.nl						

Engineering tool

Organized around projects

- Every user has one or more projects, general user heat pump catalogue
- A project has one or more energy data profiles and one or more designs
- Each design has informaiton on soil, fluid and GHEX. Selection of Heat pump en energy profile

edit design			
soildata	Ground heat exchanger type:	Earth basket/spiral GHEX	~
fluid type	Number of rings	20 🗘	
ghex data	Ring diameter	1.4	
	Spacing (m):	7.5	
ghex layout	Buried depth (m):	1.5	
delete design	Pitch (m):	0.02	
delete design	Pipe inner diameter (m):	0.026	
	Pipe outer diameter (m):	0.032	
	Pipe thermal conductivity (W/mK):	0.42	

edit GHEX data design project Els Pins Del Valles School

Easy to switch between different GHEX

Engineering tool

Highlights

- Direct (FLS) and G-function calculations possible
- Vertical, horizontal, slinky (ring) and spiral (earth basket) type GHEX
- Project organization: decoupled energy demand profile, heat pump data and GHEX type: easy to explore different solutions
- Different GHEX can have different energy demand profiles
- Temperature dependent fluid correlations
- Calculation of critical Reynolds and allows definition of transition zones
- Near surface seasonal temperature variations included

Ground Source Heat Pumps

Novel technologies

Images from partner Uponor, Fahrenheit, CNR, Ochsner

Refrigerants & Regulations

- Montreal Protocol: ODS like chlorofluorocarbons (CFCs) & hydrochlorofluorocarbons (HCFCs) banned / to be phased out in production on a global scale.
- Kyoto protocol: Hydrofluorocarbons (HFCs) to be phased out (in production & consumption) in most developed countries due to high Global Warming Potential (GWP)
- F-Gas regulation* phase down HFCs in various steps. By 2030, average permissible GWP significantly below 500.

*EU regulation No 517/2014

Classification of refrigerants

	higher	A3	R290, R1270, R601, R600, R600a, E170	B3		
mability	lower	A2	R142b, R152a, R365mfc, SES36, R1234ze(Z)	B2		
lam		A2L	R1234ze(E), R1234yf		R717	
<u> </u>	no flame propagation	A1	R113, R114, R124, R134a, R236fa,R227ea, R1336mzz(Z), R1336mzz(E), R1233zd(E), R1224yd(Z), R718, R744	B1	R123, R21, R245ca, R245fa	
		lower		higher		
		Toxicity				

Toxicity A: no/low B: high toxicity

Flammability

no flame
 propagation
 lower
 flammability
 Higher
 flammability

Source: C. Arpagaus, F. Bless, M. Uhlmann, J. Schiffmann, S.S. Bertsch, High temperature heat pumps: Market overview, state of the art, research status, refrigerants, and application potentials, Energy 152 (2018) 985–1010

Electrically driven heat pump

General parameters:

- Design: Standing cabinet with small ground area (approx. 1m²)
- Compressor: Scroll
- Refrigerant: R513A
- Superheating: 5K
- Subcooling: 8K
- Sink: dT = 10K (Water)
- Source: dT = 3K (Ethylene glycol)

Twin-cycle

Thermally driven heat pump

For the thermallydriven heat pump, **three operating modes** are possible:

- Direct heating with sorption heat pump
- Indirect heating of sorption heat pump with gas boiler as back-up and
- Cooling with compression cycle.

Lab tests: Electrically driven heat pump@AIT lab

Lab tests: Thermally driven heat pump@CNR-ITAE lab Testing rig @ CNR ITAE

Integration example: St. Cugat Current system

Integration example: St. Cugat current situation

Integration example: St.Cugat Geofit system

Integration example: St. Cugat operating strategies

Field Tests

Perugia (IT) – slinky installation

Perugia (IT) – slinky animation

Bordeaux (FR) – spiral installation

Summary

Summary

GEOFIT

- Developed an integrated framework for the design of different types of ground heat exchangers
- Validation of the new calculation methods based on laboratory experiments, CFD modelling and field-tests
- Toolkit developed for the design of different types of ground heat exchangers
- Design manual for ground heat exchanger design
- Performance analysis of different GHEX and usage types
- Cost efficient heat pump systems tailored for retrofit use-case

Geofit WP3 Publications

Publications:

Dorr, C.J., 2020. CFD Analysis of Ground Source Heat Exchangers. MSc Thesis, Montan University Leoben, Austria.

Fernandez, S. 2021. Simulation of the interaction among underground heat exchangers. Master Thesis, University Rovira i Virgili, Tarragona, Spain.

Kling et al, 2022. Design Framework and Laboratory Experiments for Helix and Slinky Type Ground Source Heat Exchangers for Retrofitting Projects. Processes Special Issue: Advances in Integrated Geothermal Energy Systems.

Kling et al, 2022. Experimental investigations and numerical validation of shallow spiral collectors as a bases for development of a design tool for geothermal retrofitting of existing buildings. Proceedings of the European Geothermal Congress 2022. Berlin, Germany. (2022).

Kling, S., 2020. Experimental Characterization of Helix-Type Ground Source Heat Exchanger Configurations for Developing a Standardized Design Tool. Msc Thesis, Fachhochshule Burgenland, Pinkafeld, Ausria.

Meeng, C.L., Development of an engineering tool for the design of novel shallow ground heat exchangers – GEOFIT. MSc Thesis. Technical University of Eindhoven. Eindhoven (Netherlands). (2020)

Witte et al, 2022. Development and validation of analytical solutions for earth basket (spiral) heat exchangers. Proceedings of the European Geothermal Congress 2022. Berlin, Germany. (2022).

Additional references

Selected references:

Cimmino, M., Bernier, M. and Adams, F. A contribution towards the determination of g-functions using the finite line source. Applied Thermal Engineering. 51, (2013), 401-13.

Cui P, Li, X., Man, Y and Fang, Z. Heat transfer analysis of pile geothermal heat exchangers with spiral coils. Appl. Energy, 88 (2011), 4133-9.

Li, H., Nagano, K. and Lai, Y. A new model and solutions for a spiral heat exchanger and its experimental validation. Int. J. Heat. Mass. Transf. 55, (2012), 4404-14.

Xiong, Z., Fisher, D.E. and Spitler, D. Development and validation of a Slinkytm ground heat exchanger model. Applied Energy. 141, (2015), 57-9.

Thank You

GEDFIT

SMART GEOTHERMAL

