Structural Building Monitoring in the Drilling Phase

By Lucia Faravelli – SIART

The EU GEOFIT project comes with the goal, among others, of linking three main characters: the geothermal technology promoter, the excavation and drilling operator and the structural engineer. Within a geothermal based retrofitting of existing buildings, the first actor designs the geothermal system and dictates the main data to the excavation (drilling) works responsible. The latter one relies on earth moving machines that transfer vibrations to the soil and from here to the target building. The third character has the main role of supervisor that no damage affects the building during the plant installation.

The simplest policy would be to instrument the site and the building and to carry out a structural monitoring in the drilling phase. Currently artificial intelligence tools able to detect the incipient damage are not available. In other words, the deployed devices will only be able to detect and locate damage when this has already seriously progressed. The alternative feasible architecture goes across the knowledge of the excitation source, the identification of the vibration propagation across the soil and the understanding of the so-called building signature, i.e., the building own frequencies. The trick is to avoid amplifications in the pattern from the source to the building of those frequencies to which the building is sensitive. Along this path, the role of structural monitoring will simply be that of checking that the recorded (accelerometric) signals will confirm the numerical models.

Fig. 1 – Drilling activities at the Sant Cugat pilot

Knowledge of the excitation source. Figure 1 above, shows the drilling machine of one of the GEOFIT partners. Figure 2 below is the plot of the vertical component of the acceleration as recorded by an accelerometer on the machine. Finally, Figure 3 gives a plot of the same vertical component of the acceleration as recorded by an accelerometer on the soil nearby the machine. It is worth noticing the differences between the two ranges of intensity.

Propagation across the soil interface. The phenomenon is covered by reliable scientific software adopting sound mechanical models [2]. The role of the monitoring is to confirm that the recorded output is consistent with the model. In other words, there should not be amplification in the frequencies to which the building is sensitive. Building signature. This aspect can easily be solved by carrying out the structural monitoring in a pre-drilling stage [3].

Fig. 2 -Vertical component of the acceleration as recorded on the drilling machine (time in
seconds; intensity in V; conversion 1V = (1/2.5)g). Zoom on the right.
Fig. 3 – Vertical component of the acceleration as recorded on the soil near-by the drilling
machine (time in seconds; intensity in V; conversion 1V = (1/2.5)g). Zoom on the right.

References

[1] Casciati S.; Chen, Z., A multi-channel wireless connection system for structural health monitoring applications STRUCTURAL CONTROL & HEALTH MONITORING Volume: 18 Issue: 5 Pages: 588-600 Published: AUG 2011

[2] Casciati, F.; Faravelli, L.Dynamic transient analysis of systems with material nonlinearity: a model order reduction approach SMART STRUCTURES AND SYSTEMS Volume: 18 Issue: 1 Pages: 1-16 Published: JUL 2016

[3] Casciati S., Stiffness identification and damage localization via differential evolution algorithms, STRUCTURAL CONTROL & HEALTH MONITORING Volume: 15 Issue: 3 Pages: 436-449 Published: APR 2008

Novel particle-based drill modelling by LTU

Using numerical modelling for simulating manufacturing processes and predicting final properties is more or less mandatory in many industries. However, it is barely used within the rock drilling market despite being a powerful and cost-efficient method.

This is why GEOFIT will introduce a novel particle-based finite element method for modelling the drilling and excavation process. With this new approach, we aim to assist operators in choosing optimum drilling parameters and tools to reduce wear These simualtions will then be validated by comparing the outcome with the data from some of the pilots.

They key strength behind these simulations is their potential to simulate the rock fragmentation processes. The rock material will be mechanically characterized and finally the numerical approach will be validated by comparing the outcome with the data from some of the pilots.

In this video below you can see some of the numerical simulations developed up to date by the group at the Division of Mechanics of Solid Materials of Lulea University of Technology (LTU) for the GEOFIT project.

Still curious about our drilling innovations? Make sure to read EURECAT’s article on their work on Drilling Bit Materials for an Improved Performance.

Marco Calderoni elected as New Chair of the RHC-ETIP

GEOFIT project coordinator, Marco Calderoni, was elected as new chair of the RHC-ETIP, the European Technology and Innovation Platform on Renewable Heating and Cooling. His mandate started on the 1st January 2021 and will run until the end of 2021. The RHC-ETIP represents stakeholders from the biomass, geothermal, solar thermal sectors, heat pumps, district heating and cooling, thermal storage and hybrid systems. It is, therefore, a unique ETIP covering all the renewable heating and cooling technologies.

Marco Calderoni takes over for Javier Urchueguía, RHC-ETIP Chairman in 2020. As key takeaways from his presidency period, Dr.Urchueguía pointed out the influential role of the RHC-ETIP to tip the balance of the budgetary distribution towards renewable heating and cooling. During his first meeting as Chairman of the RHC-ETIP, Marco Calderoni highlighted the potential positive impact of new alliances formed in 2020, such as the one with ETIP SNET and the Clean Energy Transition Partnership.

GEOFIT is already part of their project database and is now closer to the RHC Platform that it has been so far. Thus we can indirectly contribute to their work of maximising synergies and strengthening efforts towards research, development and technological innovation of Geothermal Energy within the European Union.

You can now read the full press release from RHC-ETIP here.

GEOFIT at Sustainable Places 2020

On Day 3 of the 4-day virtual Sustainable Places 2020 (SP2020) conference, Thursday 29th October from 14.00 – 17.00 CET, Marco Calderoni from GEOFIT contributed to the “Renewable Heating and Cooling Solutions for Buildings and Industry Workshop”, and the presentations and video recordings are publicly accessible.

Banner for “Renewable Heating and cooling solutions for Buidlings and Industry” at SP2020

The workshop brought together a selection of H2020 EU-funded projects involving experts from the biomass, geothermal, solar thermal and heat pump sectors to discuss a common strategy for increasing the use of renewable energy technologies for heating and cooling for buildings and industry. Renewable energy technologies for heating and cooling are safe, clean, efficient and increasingly cost-competitive. The workshop comprised four thematic sessions, namely “RHC for industrial applications”, “Storage solutions for RHC support in buildings”, “Innovative solutions for RHC deployment in buildings”, and finally the one that GEOFIT presented in called “Demonstration actions for RHC in buildings”.

Marco Calderoni from R2M Solution presented the GEOFIT project and highlighted first lessons learnt based on experience at the five demonstration sites.

R2M Solution organizes the annual international Sustainable Places conference, and the recent 8th as usual focused on the built environment at building, district, and urban scales to include our transport and energy infrastructures. Renowned for showcasing results coming out of the EU Horizon 2020 Framework Programme via the participation of cutting-edge research and innovation projects, the scope of Sustainable Places is captured directly in its name. It involves designing, building and retrofitting the places we live and work in a more sustainable way.

A GEOFIT poster was also displayed in the virtual room of Sustainable Places 2020.

Participating projects wereSWS-Heating – HYBUILD – CREATE – TRI-HP – HYCOOL – SHIP2FAIR – SUNHORIZON – Heat4Cool – GEOFIT – SCORES – Innova microSolar – Hybrid BioVGE – RES4BUILD – SolBioRev – FRIENDSHIP

Chair of the workshop: Andrea Frazzica (CNR ITAE) – partner of GEOFIT